On the PAC-Bayes Bound Calculation based on Reproducing Kernel Hilbert Space
نویسندگان
چکیده
PAC-Bayes risk bound combining Bayesian theory and structure risk minimization for stochastic classifiers has been considered as a framework for deriving some of the tightest generalization bounds. A major issue for calculating the bound is the unknown prior and posterior distributions of the concept space. In this paper, we formulated the concept space as Reproducing Kernel Hilbert Space (RKHS) using the kernel method. We further demonstrated that the RKHS can be constructed using the linear combination of kernels, and the support vectors and their corresponding weights of SVM outputs describe the complexity of concept space. Therefore the calculation of PAC-Bayes bound can be simulated by sampling weights of support vectors in RKHS. The experimental results using random and Markov Chain Monte Carlo (MCMC) samplings showed that the simulation is reasonable and effective in practice.
منابع مشابه
A Refined MCMC Sampling from RKHS for PAC-Bayes Bound Calculation
PAC-Bayes risk bound integrating theories of Bayesian paradigm and structure risk minimization for stochastic classifiers has been considered as a framework for deriving some of the tightest generalization bounds. A major issue in practical use of this bound is estimations of unknown prior and posterior distributions of the concept space. In this paper, by formulating the concept space as Repro...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملA Note on Solving Prandtl's Integro-Differential Equation
A simple method for solving Prandtl's integro-differential equation is proposed based on a new reproducing kernel space. Using a transformation and modifying the traditional reproducing kernel method, the singular term is removed and the analytical representation of the exact solution is obtained in the form of series in the new reproducing kernel space. Compared with known investigations, its ...
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کامل